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PREFACE

This report presents the final 94 GHz atmospheric emission

measurements performed during February and March of 1980 under the terms

of Contract No. N00173-780C-0165 between the Naval Research Laboratory

(NRL) and the Georgia Institute of Technology Engineering Experiment

Station (GTEES). Two field exercises were conducted at NRL during the

I~program, and these have been discussed in previous reports. The

measurements described herein were obtained with a slightly modified

version of the radiometer used during the 1978 and 1979 measurement

programs. Theoretical models of atmospheric fluctuations are briefly
discussed. The data taken during February-March, 1980 are reviewed and

Idiscussed, with chosen data analyzed with current theoretical

considerations. Recommendations and conclusions resulting from this

work are presented.



I. INTRODUCTION

The turbulent atmosphere is an inhomogeneous medium in which the

refractive index is a function of position and time. Scintillation, the

observed fluctuation in intensity and apparent position of small angular

size, is caused by random fluctuations in the refractive index of the

earth's atmosphere through which the signals propagate. The majority of

the investigations of atmospheric turbulence has been confined to the

optical and the low frequency regions. Until recently, the effects of

atmospheric turbulence on millimeter wave propagation have received

little attention, an~d, in addition, most millimeter wave investigations

have been directed to one-way link transmissions employing coherent

transmitters. Only a few studies have concentrated on passive

radiometric observations of atmospheric fluctuation effects.

The objective of these upward looking atmospheric measurements was

to establish the spatial and temporal characteristics of atmospheric
absorption/emission in the 94 Glz region. This atmospheric information

is important for determining limitations on radio astronomy resolving
power, and applications in communications, and is, in turn, necessary
for providing the overall target to background clutter threshold as
viewed from space, when combined with high resolution data on target

signatures and surface clutter.
In this report, some of the effects expected from theory are

discussed in order to provide a preliminary estimate of the effects

observed in the experiments performed dt Georgia Tech. Most of the

theoretical co siderations are extensions from optical studies; this

practice is questionable until further data and analysis exist in the

millimeter wavelength region. However, some millimeter wave radiometric

studies have been performed, and our discussion will rely heavily on

these investigations.
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TI V. I'TSSIOM OF TURnILJNCE FFFFCTS

The effoct, of atmospheric fluctuations have been extensively

studied in the ontical reqion with little consideration qiven to the

effects in the millimeter wavelenqth region. Of the measurements

nerformed at microwave frequencies and the few in the millimeter region,

practically all have hpn for propaqalion between two points with

coherent sources. 9nly a few have treated observations or relevant

theory nr nassive radiometric ohservations. As a result, much of the

theory and terminoloy must not only he adanted to a new spectral rpnion

but could hp erroneouslv uised to intprnrel passive observations. At the

current Stane o activities in the area of interest to this Proqram,

there is a need for detailed investinations of both theory and

measurerments. For the few investinations of atmospheric fluctuations hy

millimeter wave radiometry, the interest has been in slower fluctuation

rates than those investigated in the measurements performed in this

study.

In addition to the above considerations, the observed fluctuations

nriqnnate from different causes. In the visible wavelength renion, the

refractive index variations are associated with the fluctuation of the

temperature of the atmosphere due to turbulence. At longer radio

wavelenqths, the variation of the electron density in the ionosphere is

the cause of scintillation. At shorter radio wavelenqths, where the

influence of the ionosphere is diminishing, variations in the water

vapor concentration of the trnnosnhere become increasinqlv important in

rausinn fluctuations in the index of refraction. Yemp r11 has pointed

out that, in all of these renions, the medium is essentially non-

ahsorhinq and attenuation of the siqnal in the turbulent region nlays an

insinnificant role. Por millimeter and suhmillimeter wavelenqths,

however, this is no lonqer the case. Thus, it is necessary to consider

fluctuations in atmnsnheric attenuation in order to determine the amount

of si'inal fluctuation present in a radiometric ohservation. In most of

I
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the analysis performed in this spectral region [2], the model uses the

properties of the dry atmosphere to conform to a standard atmosphere,

e.q., the US Standard Atmosphere [3]. The water vapor concentration is

assumed to have a mean profile but the concentration is allowed tr)

fluctuate from point to point around this mean profile.

One of the earliest investigations of passive observations of the

fluctuation components of the atmospheric noise temperature was

performed by Orhaug [4] at 8 GHz. lie employed a 12' parabolic antenn,,

at NRAO and considered the small scale fluctuations in brightnes,

temperature during periods with no precipitation to be an important

limitation in radiometry. His short fluctuations were on the order of

1-2 0K with an average periodicity on the order of a few minutes. The

j system integration time was 5 seconds, long compared to our

requirements. In Orhaug's observations [4], the atmospheric effects

which he described were due to the thermal emission by the atmosphere,

resulting from absorption characteristics of the transmission medium.

The influence on phase characteristics of a wave propagating through the

medium was not included. Orhaug has used results published by Hogg [5]

to demonstrate the effects of changing water vapor content within the

receiver beam as a function of zenith angle. Hogg used the brightness

noise temperature from a standard atmosphere having a water vapor

content of 10 g/m3 at ground level and from a humid atmosphere dith 20
3g/m In Figure 1, the effect of increasing the water vapor content

from 10 to 20 q/m3  is indicated for 10 GHz. At the zenith direction,

it is seen that the antenna noise temperature difference for the two

water-vapor contents is 40K increasing with zenith angle. The effect

of different water vapor contents in the propagation path increases

considerably as frequency is increased into the millimeter region.

A very rough, but interesting estimate of the variation in

brightness temperature can be made for the assumption that a change in

absorption coefficient occurs over a limited height interval %L.

AT = Te-AL(AAL) (1)
where the dbsorption coefficient is ct + Au in the interval AL.

3
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In this case, Act is a function of pressure, temperature and

water-vapor variation, which is the most significant parameter. Orhaug

has considered the results of refractometer measurements to obtain the

variation of the index of refraction as a function of the variation of

the water vapor content: The index of refraction, n, is

n = 1 + (79 -_ lOe + 3"8xlO 5e) 106  (2)T T T 2

where P is the total pressure in mb and e is the partial water-vapor

pressure. With the refractivity, N = (n-i) 10 , it is assumed that

variation in N is caused only by variation in e, then

AN = 4.2!e for T = 300 0K

Orhaug indicates that refractometer measurements at different altitudes

have qiven large-scale variations in N of the order of 50-200 N-units

for the first 5 km of the earth's atmosphere. For AN=200, the

corresponding e-variation is Ae=50 mb.

The absorption coefficient for water vapor is directly proportional

to the water vapor density, p grams/ i3 and

Ap = e (3)

1 So the corresponding change in brightness temperature is

- n e-AL) (4)b n e

where c n is the absorption coefficient in nepers. Orhaug has an error

of a factor of 10 in his calculation so that the fluctuation ATb is

not as larqe as he indicates. In our case, with the correction made,

ATb = 1.75 0K

for r=0.3 dR/km = .0345 neper/km

5
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= gm/m
3

T = 250 K e

= 600 mm Hg and L 1 I km

This variation in the brightness temperature is observable with our

system, but is not as large as was observed in some measurements.

Soilner [6] has made measurements of the frequency spectrum of

fluctuations in submillimeter sky emission and absorption. The

observations were for single beam techniques and double beam techniques

(at fixed separation at 6 feet). The results were analyzed in terms of

their power spectral density between 4 x 10 Hz and 0.25 Hz. For

observations involving the fluctuating atmosphere, Sollner has

considered the observed brightness of a source of brightness Bs ( v)

propagating through an emitting and absorbing medium of brightness B M(V)

and optical depth t(v). This observed value is

B =fBs(v)f(,)e-T(")d, +JBm (v)f(v) (1-e-( ))dv (5)

where f(v) is the normalized response of the detector; the first term is

the contribution from source (transmission term); the second term

3results from the intervening medium (emission term). The fluctuations

in these terms are transmission noise and emission noise. If one

assumes an effective optical depth, the transmission term can be written

a s -T
BT =e eJ Bs(v)f(v)dv = e - e e (6)

For a source constant in time, any fluctuations in the transmission

term are due to change in te This term can be made to dominate the

emission noise by choosing a sufficiently bright source. Sollner gives

e as T + A( t) where AT (t) is the fluctuations of the effective

6
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optical depth

BT = Bsexp -[ + e (7)

and the power spectrum of , as

s.( f) ...=

e

where the ,aqnitude of depends on tef is the frequency in 11z and,'. is

a constant determined from observations.

In the case of emission noise, simplifications are not possible

because R changes with time as does T. The physical situation of
B m m

regions of differing B 1. and, passing through the observed solid angle

can be represented in terms of spatial and temporal distributions for

1,1 and i. In the investigations performed in this program, neither a

tracking capability nor sufficient resolution to localize solar areas of

constant brightness were available so that the important aspects of the

absorption term could not be investigated. Such observations should he

performed in the future. Further work should he performed in other

well-defined observing windows and correlations should be made with

temperature, water-vapor and wind velocity.

Several additional considerations can be given to millimeter

fluctuation effects. In the case of millimeter wave propagation

observations, theory predicts a strong dependence of the scintillation

amplitude and anqle of arrival variations on the humidity structure

parameter C, in addition to the temperature structure parameter CT.

Tatarski [7] has shown that the resulting energy distribution in

the turbulent atmosphere is log normal, characterized by a variance
2

'32 that is a function of the degree of atmospheric turbulence.

IE
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Chernov [R] and Tatarski [7], in their original work, treated

mainly optical fluctuations and neqlected the effects of absorption on

the fluctuations. Recent work of Russian workers has considered

fluctuations in the millimeter and submillimeter wavelength regions,

requirinq the inclusion of absorption by atmospheric water vapor.

I7YUimOV FO] has solved the wave equation to account for absorption

resiltinq in expressions for amplitude and phase fluctuations valid for

millimeter wave propaqation. As a result of this v%-rk, the index of

refraction N is qiven by

nl + irm

with n = n ' p t9)

and m = ±+

Ilere, n and 10 are mean values of the real and imaginary parts of N,0 0

and,: and ' are the fluctuating parts.

Armand [10] has given the spectra of fluctuations of the real and

imaginary parts of the index of refraction and their cross-correlation

in terms of the temperature and humidity fluctuations [See McMillan et

al, Reference 11].

Gurvich [12] has given values of w and vforcalculations of the

spectra of fluctuations
e e 0-6

= ( Kl + K2 'r + K3y ) x 1 (10)

" ( PC To, e ) e T o P X'xx10f6  (11)
0 e 0 2Po

K1 = 780K/mb

K2 = 72'K/mb

K3 = 3.7 x 1O5 (OK) 2 (only weakly dependent on

p = atmospheric pressure in mb

e = partial pressure of water vapor in mb

A = transmitted radiation wavelength

e0 % PO, To = stationary values of e, p, T

y = absorption coefficient in nepers/km

I8
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The forms of the spectral distributions of fluctuations of

temperature fT(q) and humidity ,p(q) are qiven by Gurvich [12] (see

[11]). For the relationship between Cl, the temperature structure

parameter, and C n9 the index of refraction structure paraneter,

McMillan et al [Ill have used

CT = C(T 2/79p) x ]O_6  (12)

Actually Tand C are the meainqful parameters, but several
authors quote values for Cn and CT .

The limitations imposed by atmospheric fluctuations on the maximum

linear dimensions of larqe telescopes have been considered by Bastin

[13]. The limitation of angular resolution arises from differential

phase change in radiation reaching either side of a large telescope as a

result of changes in refractive index of air along the extreme rays.

Bastin has considered that relatively small changes in total water-vapor

in the solar direction can be determined as a function of time from

small fractional variations in the transmitted solar intensity. This is

the consideration that Sollner had made [6]. For deducing the

fluctuation effects, it is assumed that a fixed distribution exists with

random fluctuations in the concentration of water-vapor with respect to

the atmosphere drifts through the antenna beam due to wind movement.

This widely used assumption is in some cases referred to as the Taylor

hypothesis, but is actually Tatarski's hypothesis of "Frozen-in"

turbulence. Under this assumption, temporal changes can be related to

spatial ones and therefore to phase changes which would be expected to

occur between the spatial limits of a large telescope. Kemp [2] has

extended this work by employing concepts put forth by Brooker [14].

Kemp [2] has given the absorption and refractive index of water-

vapor as (a,) and n(o) by the relations-

,t( = K(vJr = absorption coefficient

n(,)- 1 = L(v)o, n(v) = refractive index

and p = density of water vapor

9
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lie assLues that all irregularities have essentially the same

dimension 0 corresponding to the scale of largest significant eddies in

the turhulence and uses for the variation in water-vapor density the

mean square value for the deviation from the mean ( ' ) This

variation produces a corresponding change in refractive index and

attenuatinn of the signal within the region.

The fluctuation in refractive index is given by

I n- = ( L()) 2  -- - (13)

i The change in signal intensity is

.1 = I ., for i -

where I., = signal intensity

. = K(v) DAt(

[I12 = change in optical depth of the region

Thus, K()f ()-
IV) (14)

= relative mean square intensity fluctuation per region

The mean square fluctuation in phase of a wave of wavelength

jpropagating through one region resulting from a refractive index change
is

2 -A -1 2

- rAT 12

where S(,) 2-L(,)

= the scintillation coefficient

11



I
I

If now a wave travels a distance through the fluctuation layer, it

wil encounter 2, regions. With the assumption that the water

fluctuations are uncorrelated, the phase fluctuations will add in random

walk fashion

-- 2" - 7 (16)
D

Similarly, the relative fluctuations in intensity are

2 (17)

Thus, the phase fluctuation for a wave passing through a layer is

related to the intensity fluctuation by

2 = 2 2

for 1 . The scintillation coefficient S(v) is inversely proportional

to pressure and is a weak function of temperature and the concentration

of water vapor. The coefficient can be taken as a constant throughout

the troposphere, and the mean square fluctuation in signal phase can be

determined from intensity fluctuation.

Kemp [2] has considered the practice of determining the

fluctuation in phase difference for the wave arrivinq at two points

separated by a distance d, which is perpendicular to the wave being

propagated. If C(d) is the correlation coefficient between the phase

fluctuations at the two points, the phase difference between the signals

at the two points is

-- C(d)f (A ) 2 (19)

In addition, let ,s the angular scintillation, i.e. the

fluctuation in the direction of arrival of the phase front.

2 2 ---) 2 -(---" --2---

11
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To consider the atmospheric limits on an instrument of aperture d,

Kemp compared "swith the minimum resolved angle due to diffraction. for

the instrument to be atmospherically limited,

YS 
(

or 2 f1-C(d) (,vt,)2 (2.44d,2 (21)

Thus, when the random phase fluctuation due to the medium exceeds

1.741 radians, for some value of d, the atmospheric angular

scintillation will exceed the diffraction limit so that the instrument

is atmosphere limited.

If the mean square difference coefficient A 2(d) is related to the

correlation coefficient by

A% (d) =21l -C(d)' , (22)

then, A2(d) (A ) > (2.44)2 (23)

In the millimeter wavelength region, phase fluctuations and the

difference coefficients are not measured directly, but they can be

determined from observable intensity fluctuations due to the variation

in atmospheric attenuation.

For 1 1, the variation in phase and intensity are directly related

to fluctuations in water-vapor density. Therefore, the correlation

coefficient and the mean square difference coefficient for phase are

identical to those for intensity fluctuations.

1 12
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With equations 18 and 23,

.(d) S()(2.44n2 (24)

2
where now , (d) is for intensity fluctuations.

The instrument is atmospherically limited if

(1.74 )2/S2 (M. (25)

In addition, the limiting size of a diffraction limited instrument

can be obtained from

A2(d) = (1.74r12 S-(v) I (26)

Neither the work of Kemp nor that performed in this program could

measure intensity fluctuations from two positions but it has been

possible to measure intensity fluctuation as a function of time at a

1qiven position. It is therefore possible to use Taylor's hypothesis to

relate the mean square difference coefficient for a time interval t to

the mean square difference coefficient for the spatial separation, d, by

L the relation

2 2 (27)
Ad = o(t) = .t = o(d)

d , v drift velocity of the atmosphere
v

Kemp's work indicated that, during his measurements, the drift time

interval for fluctuations was about 40 seconds, which when combined with

the wind speed of 10 m/s gives the turbulent region dimension to be

400 m.

13
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In their investigations of millimeter wave atmospheric fluctuation

effects, several authors have employed various concepts and methods of

expressinq the effects. As previously indicated, the majority of

treatments applies to active one-way propagation and many discussions

are not applicable to passive observations. It is important for this

discussion, however, to include brief comments on these various

investigations:

1.) The Kolmoqorov model [15] assumes homogeneous and isotropic

conditions of the atmosphere to describe the index variations. For a

particular range of separation between two points, r and ' the

model yields

n(r ) -n(r 2 ) ?  2 C2 rl - r 2  2/3 (28)

where denotes an ensemble average and C n is the index structure

constant. The separation range for validity of the model, often referred

to as the inertial subrange, is

o 0 rI -r 2  L (29)

where L and 9 are the outer and inner scales of turbulence

respectively. L0 and 0 may be thought of as the approximate maximum and

minimum of the eddy size. In the atmosphere, 0 ranges from a millimeter

to centimeters, whereas L for horizontal propagation in the low

atmosphere, is about 1/3 the height above ground. For separations

greater than Lo, the mean square index fluctuation levels off to

C2 n L o2/3 whereas, for separations less than . viscosity effects cause a

very rapid decrease in index fluctuations.

I
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2.) For intensity fluctuations in the millimeter wave region,

theory requires consideration of the problem in two separate domains

dependent upon the size of the outer scale of turbulence compared to the

first Fresnel zone along the propagation path of length R. The cases

are

Lo - AR and L A -R-

Most rough estimates of turbulence effects in the mm wavelength region

are based on Tatarski's calculations [7] , valid for Lo  AR-* rio

simple quantitative models of amplitude fluctuations for the case of

exist, but Tatarski for a plane wave with L /7R gives the variance0
of the log-intensity fluctuations as

'12 = < (10 lOgl o  
I  ) 2 >

23.39 C2 k7 6R11 6 dB 2 (30)n

where k = 2.,/,

Worst-case estimates [16] for C have been made on basis of

optical measurements to give C2 n 6 x 10130m2 / 3 for strong turbulence.

3.) Using optical constants for obtaining estimates of millimeter

wave turbulence effects, one must realize that optical turbulence is

mainly dependent upon atmospheric temperature fluctuations and that

varying water vapor effects are negligible. For millimeter waves, water

vapor contributions to the index of refraction become important. Brown

has shown that, for microwaves (> 10 GHz) statistical variations in

water vapor below 8 kin can produce values of C2n that are more than

two orders of magnitude greater than the values for the corresponding

optical case; therefore, estimates ofo 2 based on optical constants may

j he in serious error.

15
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4.) Armand et al [16] examined fluctuation effects near the 920

5 ,rn water line and found that on the absorption line center, the

amplitude fluctuations were approximately five times less than in the

1 980 ;in window.

5.) Mavrokoukoulakis et al [17] have compared the measured

variances of log amplitude fluctuations at 36 and 110 GHz as a function

of time and showed that the fluctuations at the different frequencies

were very well correlated. Ho et al [18] have performed simultaneous mm

and X-band refractivity measurements of C2n obtaining over a one-hour

period, respective average values of C2n of 0.25x1014m 2 /3 and 0.32

x 10
1 4m-2 /

3

3
6.) Andreyev et al [19] have made measurements at A = 2 mm on a

horizontal path of length 5.6 km in a strongly turbulent atmosphere.

They were concerned about testing Tatarski's hypothesis of "frozen-in"

turbulence and estimated the width of the spectrum on intensity

fluctuations due to cross-transfer of homogeneities across the path of

propagation to be

AF = - v /L 3l)

where < v1  = the mean speed of homogeneities transfer

and L = path length

Andreyev et al found ,,F = 0.17 Hz. They divided the fluctuations

into fast (. 0.1 Hz) and slow ( < 0.1 Hz). Their conclusion was that

"frozen-in" turbulence doesn't describe intensity fluctuation quite

correctly. The conclusion was that "frozen-in" turbulence was confirmed

when it describes intensity fast-fluctuations. Intensity slow-

fluctuations are assumed to be caused by cross-transfer and evolution of

large scale inhomogeneities whose sizes are more than AL. To estimate

C n, Andreyev et al considered the effect of aperture averaging and

obtained values for C in the range from O.12xlO -6 to 0.61x1O'6rm " /3

1 16
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In support of measurement of atmospheric turbulence, a vertical

profile of the thermal structure of the atmosphere would be very

important. Rufton [20] combined thermal sensor technology for

microthermal measurements with radiosonde balloon systems. This

resulted in an extension of turbulence sensing to heights up to 25 km

above sea level. This measurement technique provides CT 2(h) data where

CT 2(h) is the temperature structure coefficient and h is the altitude.

The refractive index structure coefficient C 2(h) is obtained fromT2 h  n

relationships with CT(h) at least for optical effects. Bufton obtained

the mean-square temperature difference between two microthermal probes

as a function of altitude. This is, by definition, the temperature

structure function, DT, at probe locations r1 and r2
DT(rI, r2 ) = <[T(r,) - T(r2)]2>

T(rI ) = temperature at point rI

0T(r) = CT2 r213 , r = Ir1 - r2 12

CT is a strength parameter. A larger value indicates more

temperature fluctuations, which are associated with more-turbulent

mixing of air. The general expression for refractive index as a function

of temperature and wavelength provides the connection between CT2 and

CN2 . Bufton uses the expression 2

Cn(.9 P(h)x 10-6 C (h) (32)
(h) T (h 'Ih (2

where P(h) = atmospheric pressure (mbars)

T(h) = ambient temperature (0 K)

h = altitude.

This relation has been used by McMillan et al [11] [See Equation

12], but Bufton has indicated that the relation applies for 0.5 pm.

Therefore, caution should be exercised in using it at millimeter

wavelengths.

1
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P recent puhlication hy Hill, Clifford and Lawrence F?2 treats the

effects of refractive-index and ahsnrption fluctuations on propaqlation

for the microwave reqion throunh the TP. This work can he adapted to

the vertical raliometric observations of interest to this prooram. The

'ln .' nroun has investigated the denpOndence of fluctuations in

at-nnheric absorption and refraction upon fluctuations in temperaturp,

hiriiditv and pressure.

For the apnlications of interest in this renort, fl,.ictuations in

atonheric refraction are not sinnificant. The work of Hill et al [2?1

has cnnsidered the cnntrihtitions from line absorption by HP. They

have developed functions, rplatinq the fluctuations, which are necessary

for evaluiatinn degradation of electromagnetic radiatinnbv tutrbulence.

In the calculation o- the turhulence effect, %e must choose a set of

mean atmospheric conditions. Since the observations are for vertical

absorption effects, the mean atmospheric conditions are chosen for

vertical layers of the atmosphere.

In reference F,?1, it is assumed that turhulent fluctuations in

total pressure nive a neqlinible contrilution to absorption and

refractinn fluctuations. This assumption is for horizontal active

system nronaqatinn, hut is assumed to apply to vertical observations.

Whether this is a reasonable assumption for vertical observations

remains to he determined.

In the millimeter wavelenoth region, humidity fluctuations dominate

absorption luctuations. In order to determine the effects of

ahsorption fluctuations on antenna temperature (T), it is possible to

emnloy the variation of atmospheric absorption as a function of

fluctuations in temperature, humidity and pressure. It is necessary to

nrovide these functions that relate the fluctuations in order to

evaluate the deqradationof radiation by turbulence. It is necessary to

choose a set of mean atmospheric conditions.

1
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The relations employed for the fluctuation determinations include

the linestrenqth (Si) for an individual i (in units of cm-2  per unit

concpntration) and the linewidth. Roth the linestrength and linewidth

are tenperature dependent, and, in addition, the linewidth depends on

pressure and htmidity.

The linestrenqth Si  has temperature dependence arising from the

partition function, QPART' and the difference of 2 Roltzmann

distributions [22]

exD( -E L /CT) - exr( -E.U / CT)
S.i " -- - 1IQPART

Eu and E L are values of upper and lower
state enerqies for spectral line i (in units cm&).

Then, C = kB/hc = 0.695008 cm
-1 OK-1

and vi = E u EL

The temperature dependence of the linestrength is shown to be

. ) Soi(To/T)aexp EiL( (I exp(-vi/CT))Si  (T) = -C--O/ )-To el -exp-xi/p)

a = 3/2

Soi= strength of line i at the reference temperature T0

1i

I
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g Total absorption is the sum over all lines-

I n r,41TV

I n

Q absolute humidity

The fluctuations in Li are given by-

>1 s<bT + bi ) <b

TT i i T P i Q
I 1~ ~~ 1(i -~ );-

T i  ( 1)PQ

1 1 •T

b 1

I S R I

S i 6TC T P(-iC)-b + R~. T

p 6f
- 1 - R

Q 6~L
- = RUi 6Q

where R - 4kQT

P + 4kQT

I -2
I 20
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'l 1 g 1S

and a = 3/2 , b 0.62

If we were only concerned with "i fluctuations due to humidity
fluctuations, the result would be

S=. > ,21 q
Q. <Q>

(A r . Q ." L
I 1+ 6Q2

i 6(Ai (i i Q <Q>

= .CA g 4kQT

I+ I6
g ci P + 4kQT <Q>

The total fluctuation in atmospheric absorption is

2:S = ~ <bQ> <Q

--'i g +_g ij P+4kQT) <Q>

2I
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In the low frequency limit, vi. CT, applying to the

,nillimeter/suhmillimeter wavelength region,

Si(T) T -5/2  ex ( -EiL / CT)

The dependence of linewidth on P, 0, T is given as [221

Ii( P. T, oi T P4 Q)r

with b = 0.62

oi -width of line i at reference pressure P andtemperature T 0

Hill et al used formulas for differential chanqes to find the

fluctuations caused by turbulence (accurate to first order in fluctuations).

Variables P, T and 0 are written as the sun of their mean values - P,

-T and -Q and their fluctuations caused by turbulence -

P = <P. + SP

T = -T, + ST

j ) = .-Q;. + SQ

The following relations [22] are applicable to the measurenents of

this investigation -

Imaginary part of refractive index attributable to a single
absorption line = nil

Absorption coefficient due to the same line -

nii I i i/47T

SiQ
Si = Q

g = line-shape factor

22
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fable 1 of ?efeore nco F??1 ive';- the i ne s ha pps and t heir

"rri vatfi Vs w i th res pec t t o Ijnewjd rt h. I t i s no s sible4 to eri plo v thev

ak ovo formWj a-. to determi ne t he fl itiat ion i n t he absonrpt ion

r or, i r nt f over .1 v vert icalI pa th o r seonfn of t he pa th a' a, function

()f t he( Ii( tluja I i on,, of the th ree va riah Ie, (P, 1 , 0.). 1wo

Aannroximations Of the fluctuation in brioihtness, terpprature have
rpcentl" vbeen ripl oyed( by P . I.,. McMi 11 an of Our l aboratory t o compa re

Iwith the data reported here. lie considered fluctuations in the vertical

.ia t rr vapnor 1ti stribj(it ion to produce flu tc tuat ions. in the absorption

cnoeficiont -f water vanor. In one case, he considered a fluctuation in

Ihumidity at oroujnd leovel a nd a correspondinn fluctuation ve'rtically

tirourth thp atmosphere. This approach nave, fluctuations in briqhtness

onempera t Ure on the order of bt loes than the ieasujred values,. The uise

r a fluctuiation throuhouit thp atmosphere is not the most reasonable

fassumprtion. n~ mere reasonabe one is to asuethat the turb-ulence

ocrredrr( in a layer annronximratelv 1 km wide, at some Altitude (used as 10

kmi in the Case anaIV70d . The jutstification of a stratification like

this, riq ht be fouind i n the work Of Qufton F,'11. The calculations

rr'sjl t (' in brinhtness temiperature fluctuations on the order of the RM1S

values of fluctuation observed in the experiments, hut almost an order

of mannitu'e smaller than the peak-to-peak fluctuations which have been

observed. Poseibly a stratification of the turhulance in the forT'! Of

layers or horizontal sheets of different amplitudes, compatible with

t hermosonnde turbhul ence data rF1, would be the most applicahle

I 23
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Thcb atmnsnheric measurements conducted diirinn this contract havn,
1,(,(n obt a ined with a sunorheterrdvne, douhle sidehand, Nlckp-switched,

~ r rad(IiomePtr. The radiometer, rpviously described in the semi-

!)nua renrt ["1 I, is depictedi in r-iqiire, 2. The most unusual feature

of t h,, rad i me(t er front-endA i c the quasi-optical antenna feed which
'I 1 nw-f o n of severalI antenna scheme s t o he empl ovpe. [injure 2 01hows

the front-end as it was onerAted a~t the prime focus of the Nlaval

' rsearrh t-L~oraterv's ( 1)1_) 10 'oot Hi sh durino, the 197P and 1070(
* measure-ent pronirars. vor the IopO measurements, the radiometer antenna

feepd was, i nteirated vii th a 'M inch Casseqrain antenna system by

cnnectfinq the conical horn' s waveqjuide Port to the feed horn of the

cAsseqrAin antenna. A'ntenna patterns for the modified system are shown
in Figures I ?nd 4.

A new sharrpess wafer mixer was, installed in the radiometer for the

IlOPO measiu-rents which greatly improved system sensitivity at the

larger Post-detection bandwidths needed to observe atmospheric emission

fliictuations. For most data runs, the minimuIm detectable temperature

*( *" Tmin )of the radiometer was less than 1 0Kfor a 6.25 H-z bandwidth
(n (IF6 sec i nteg(rat ion) . The actual A T mi n for each data ruin is noted

on the time history/spectral density plots in Appendix A.

The overall Perfomance of the radiomptric measurinq system was

oye le7 I nt duiri no the 1OPP measurements . Systen sensitivity and

calibration reneatahility were several orders of magnitud4e better than

that obtained dutri ng the 197P andi 1070 me~asurement programs at MRL

where seri ous, rai o f reqtency (PFT ) from the ambient electrical

environment deciraded system Performance. "IlIe some RFT was noted
during oneration on the fleorgia Tech campus, the effect uinon the system

was not nearly as severp nor prolonried as that experienced at N~RL.
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P. FXPFPTMFIITI'L ORISFP'WATTOfltI
Observations of atmospheric fluctuations were made tinder a variety

of atmospheric conditions durinn the period from February 28 throuqh

"Iarch IF, lOrfl. Appendix A lists the data taken durinqi this period with

notes on weather conditions and the approximate AT min existing for the

oh-srvations. The minirum detectable temperature was checked

npriodicallv hV observations on the ambient load, reference load and hot

load, estlmatinq the neak-to-peak noise NJ and from this, calculatinq the

mininim detectable temperature, AT = - ('F) where SF is a scalp

factor qiven in 0 v/inch of recorder paper. The weather conditions,
listpd in Appendix R, provided a larqe variety of conditions ranninq

from clear skies to overcase, from low hiridity ( -,.4 n/m) to hiqhIg
humidity ( - 11 n/m ) and stronq winds. The conditions of the sky

(clear, ovprcast, etc.) can he obtained more accurately from the notes

in Appendix A, since thee data were derived from ohservations made at

the site. The Hata in Apnendix R were furnished by ( OAA at the Ptlanta

Airport. 0 n March ?, IQPO, the weather conditions were very severe with

the temperature on the order of 110 F, strong winds and snow flurries.

Ohservations on the ambient load were made not only by the load

switchinn scheme previously described [211 hut by placina a load

directly over the antenna feed born. This allowed an observation to be

made to include all losses within the system (switching, reflectors,

horns, etc.) except for the antenna disk. The measurements showed no

'iqnificant difference from the internal switchinq as far as noise level

of the system was concerned. Neither technique, switchinq or external

load ohservation, resulted in fluctuation levels comparable to the sky

ohservations. These observations on the ambient load indicate that RFI

or other external effects did not contribute to the large fluctuations

observed diring sky measurements. RFI should be the same for the

external load case and the sky observations.

i
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C. FlATA ANn PRFLIMINARY ArlLY'IS

The radio-o-trir data taken dutrinq the period from ?P Februarv, I n n

to lr March, 109, are qiven in Ippendices C (Amhient Load Pata) and P

(7enith 1Tv Pata). The hrinhtnoss temperature flujctuatinns for sky

nhservation are much larqer than the fluctuations ohtained duJring

ohbservatinns nr the amhient load. They do, in fact, exceed by a large

,"aroin the theoretically expected valies. Table I nives the hriqhtness

temperature fljctuatinns as determined from the data of the Appendices.

Tbl 1 lits the peak-to-peak temperature fltctuations and the

j cirresnondinq 'TPMC. For most cases, the ambient load observations

were on the nrder of 5 0 K or less for peak-to-peak fluctuations

vieldino /,3f 9  I .0 oK. For the zenith sky measurements, the peak-

to-peak fltctuations ranged between 1 OK - 30 oK as sky conditions

varied considerahlv. The resultinq ATRMiS ranged from 2.q 0 K -
K. The most commonly used parameters durinq the observations were ?0

seconds for the observation time and an integration time 0.16 sec. In

most cases, the fluctuation rate was much faster than t = 0.16 sec.

nn some observations, as for Puns IR-43 on Fehruary 28, the temerature

scales ere too low and fluctuations were excessive compared to the

lare flucttations for zenith sky observed in other runs. It is not

evident what the cause of these changes were, particularly since the

charactristics returned to typical values on Run 52 of that date.

The preliminary analysis performed hv R. 1-1. McMillan was intended

te nrovide an estimate of the fluctuatinns which can be expected for

roasonahle assurintions for atmospheric parameters. The estimate,

however, resilts in exnected fluctuations of only a few denrees maximum

amnlitude, an order of magnitude less than the peak-to-peak amplitudes

of flurtuation that have been observed. A more accurate method of

determininn the meteorological conditions is needed in order to make

detailed calculations of the effects.

i
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Table IA

Brightness Temperature Fluctuations

1.) Ambient Load Observations:

Observation Time = 20 sec.

i = 0.16 sec

Feb r ua r 980

Run # ATPeak-PeaK ATRIS

22 7.5 1.25

28 19 3.16

38 16 2.6

57 6.5 1.08

62 5 0.83

67 6 1.0

February 29, 1980

74 8.5 1.42

76 4.3 0.71

83 4.25 0.708

84 5.00 0.83

85 4.5 0.75

86 4.25 0.708

110 9.25 1.54

119 4.4 0.73

17 6.25 1.04

18 6.00 1.00

30
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March 2, 1980

34 6.5 1.08

44 4.5 0.75

58 4.5 0.75

March _L_1980

19 5.5 0.92

8 5.o 0.83

March 11, 1980

8 5.0 0.83 T = .5 sec
13 5.8 0.97 slow variations

25 3.0 0.50 T 1.6 sec
very slow variations29 2 0.33

42 8 1.33 T = 0.5 sec
changed to 5 second observation52 21 3.5

60 38 6.0 " i 0.016 sec

I iarcl 16, 1980

78 4.0 0.667 Increased back to 20 sec observation
99 3.5 0.583 T = 0.16 sec

115 2.5 0.418
88 1.0 0.167 5 second observation low fluctuations,

but rapid excursions
20 sec observation

* 99 4.1 0.68 T = 0.16 sec

3
1
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Table 1B

Brightness Temperature Fluctuations

2.) Zenith Sky Observations

Observation Time = 20 sec

T= 0.16 sec

February 28, 1980

Run # A Peak-Peak ATRMS

9 24 4

10 22 3.67

11 22 3.67

12 26 4.33

13 21 3.50

18-4 3 see note at bottom~ of Table

52 23 3.84

53 35 5.84

54 30 5.00

55 30 5.00

56 30 5.00

58 31 5.17

59 28 4.67

63 26 4.33

64 22 3.67

65 23 3.84

71 27 4.50

72 26.5 4.41

73 23.5 3.92
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February 29, 1980

78 16 2.67

79 17 2.84

80 17 2.84

81 16 2.67

82 16 2.67

87 16 2.67

88 18 3.00

89 17 2.84

90 18 3.00

91 17 2.84

97 20 3.33

98 18 3.00

106 17 2.84

107 18.5 3.08

108 22 3.67

109 18 3.00

116 16.5 2.75

117 19 3.17

118 17.5 2.92

12 15.5 2.58

13 17 2.84

14 16 2.67

15 17 2.84

16 19.75 3.29

1
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1 March 2, 1980

36 19.5 3.25

37 20.1 3.35

38 19 3.17

39 20 3.33

40 20 3.33

45 15.5 2.58

46 16.8 2.80

47 15.9 2.65

50 21 3.50

51 19.4 3.23

52 19.25 3.21

53 18.9 3.15

54 20 3.33

60 16.4 2.73

61 17 2.83

62 16.5 2.75

63 15.8 2.63

164 17 2.83

65 21 3.50

71 19 3.17

72 20 3.33

73 18 3.00

74 22.9 3.82

75 17 2.83
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March 11, 1980

9 18 3

10 21 3.5

12 17 2.83

18 9.5 1.58 T =0.5 sec

21 9.5 1.58 Change in fluctuation characteristics

22 9.0 1.5

23 12 2.0

30 4.0 0.67 T 1 .6~ see I

31 5.0 0.83 i

32 7.0 1.17 i

33 10.00 1.67 to" slower

34 5.00 0.83itf

44 23 3.83 T 0.5 sec ",faster

45 23 3.83 I

46 24 4.00 US tI

47 24.4 4.07

March 16, 1980

80 16.7 2.78 T 0.16 sec

81 17.5 2.92

82 20 3.33

83 20 3.33

100 7.7 1.28 60 sec observation with change in

101 1 1.67characteristics of fluctuation

102 8 1.33
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117 7.5 1.25 T=1.6 sect 60 sec observation

118 4.0 0.67

119 5.5 0.92 0

82 1~0 1.67 T =5 sec, 500 sec observation

83 6 1.0 t tt

84 4 .67 it ItS

101 16 2.67 20 sec observation, I = 0.16 sec

102 18 3.00 t1ito

103 15 2.50 I

Note: For zenith observations 18 through 43 on February 28, 1980, the
temperature scale was too low and fluctuations were -330 K.
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Whereas the observations indicate that larqe fluctuations occur

under the atmospheric conditions that prevailed durina the February-

t4arch, P1RO period, a more riqorous analysis is necessary. The

assumption that the atmosphere is stable durinq the observation period

must he analyzed further. V. E. Derr of NnAA (Boulder), in a private

communication to R. W. McMillan, has indicated that stronq fluctuations

will he ohserved when the atmosphere is in a state of transition, such

as at the time of formation of foqs and clouds. He has observed stronq

return usinq an 8 mm radar from areas of clear sky near clouds, while

simultaneous observations with a ruby lidar showed no returns. He

attributes these return to refractive index inhomoqeneities caused by

water vapor. such conditions could well have existed durinn the

mpasurements of this program.

37
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I , fnNCIIIflN AMP RFCAMMFNnPTIONS

Observations performed during the period February ?P - March 16,

1On have shown sky temperature fluctuations ranging from 1' °K to

-n°oY peak-to-peak values with ATRMS 3-<'K. These values correspond

to several sky conditions from clear to overcast. Preliminary

calculations indicate that, for clear weather conditions, the expected

fluctuations are smaller by a factor of approximately 4-7 than the

observed fluctuations. The meteorological conditions were such that

considerable instability could have existed in the atmosphere. The high

rate of fluctuations is also not expected. Some sky observations

appeared to have a rapid systematic variation characteristic of

instability within the radiometer or from external RFI. The lack of

such effects during the ambient load observations, however, does not

support the contention that the observed fluctuation originated from

system/RFT problems. Ffforts to associate the large fluctuations with

sources other than the atmosphere have not resulted in any conclusions.

Some aspects of the radiometer which was used were not desirable and do

present potential sources of fluctuations. This is particularly the

case for the open structure beam-wavequide apparatus in the front-end of

the radiometer. This structure was employed for the observations on the

In' dish at NPL but was not needed for the measurements at Georgia Tech.

!t did contribute to the degradation of the noise figure. For the ATmin

observed with the system, the overall system noise figure was

approximately 12 dR. One should expect at 14 GHz that a NF- 7-P dR

should be achievable with conventional radiometric systems for T= n.16

sec. However, although this structure did degrade the sensitivity of

the radiometer, it cannot account for the large variations (above the

minimum AT) which were observable when viewing the sky.
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The work of Kemp r?1 has associated scintillation with water vapor

fluctuations in the atmosphere. The suggestion of Derr, however, for

the transition case of changing atmospheric conditions, would have us

take into consideration refractive index changes. Kemp's observations

were made during high humidity of summer months whereas the measurements

of this program were made for water vapor concentrations that varied

from 0./i g/m to !,;.I g/m . it is quite probable that fluctuations

of the magnitude that we have observed did not originate from water

vapor fluctuations alone, particularly for the case of the low water

vapor concentrations.

The rapid fluctuations which have been observed in these

experiments are also at variance with theoretical predictions, in that,
if the Taylor hypothesis is assumed to apply, then the water vapor

4 distribution is assumed to drift through the beam of the radiometer as a

result of atmospheric movements and the rate of change in water vapor

distribution is considered to be slow compared with the time taken to

transit through the beam. The transit time would have to be

exceptionally short for the Taylor hypothesis to hold.

The data presented provides some initial information on

fluctuations at OA 'Hz. It is recommended that the following tasks be

performed:

1) Perform a more rigorous theoretical study of the fluctuation

effects to define the expected effects on a passive system more

accurately.

21) Perform more extensive measurements under a greater variety of

atmospheric conditions. It is necessary to correlate observations with

weather conditions; it is not evident that all reports of clear weather
are for conditions void of thin visually invisible clouds.

')Amonq the observations to be made are:
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a. Simultaneous radiometric measurements at 94 GHz with

two separable radiometers. Measurements as a function of

the separation of radiometers are important for determining

fluctuations across the face of a large antenna. Vaia

tion of the separation of the radiometers should be per-

formed, as should interchanqing of the position of radio-

meters. The latter test should remove the effect of immediate

surroundings on the apparatus.

h. "imtiltaneous measurements at 140 rHz and ??n GHz to
examine fluctuations as a function of frequency.

c. Measurements are needed for several different weather

conditions, actually for all seasons if possible.

d. Oln the basis of Ka -band radar observations, II.F. flerr

of NOAA has recommended that simultaneous radar and

radiometry measurements be performed on the same

propagation path. Radar and lidar observations would

provide information on particles not observable

visually.

The measurements reported here must be considered a first effort

toward fluctuation effects in the millimeter region. Considerably more

data are needed. The observed effects cannot be expected to occur under

all measurement conditions as the prevailing conditions during the
period that measurements were taken in this work were quite severe and
continually changing during observations. Measurements as a function of

seasonal variations over an extended period of time are needed. A more

accurate method of determining the conditions of clear sky, compared to

that of visual observation employed in this program, is needed.

The work of Hill et al r??I should be investigated for extension to

Ithis problem. Values of pertinent parameters of their expressions are
needed for comparison with experiments.
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APPENDIX A

DATA TAKING RECORD

28 FEBRUARY 1980

RUN TOD SCENE NOTES tm n ( 0 K)

9 1100 SKY Strongwind, very clear sky 1.50

j 10"""""

to it It It If

12 It

13 1200 " " i 2.01

18 1330 " " i t

.19 it If o

2 0 f V " i

21 " " to

22 AMB it

LOAD(INT)

23 SKY " it

2 4 to i

25 .. i

26 " " " "

27 " t " t

28 AMB o " "

LOA D (IN T ) it...

29 SKY It "

3 0 f t " i

34 to to to of

3 5 if f " i

3 6 " if of of

37 of t i t

38 AMB "

LOAD ( INT)

43
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1 28 FEBRUARY 1980

(CONTINUED)!
RUN TOD SCENE NOTES ATmi1 (0 K)

I i SKY Strongwlnd, very clear sky 2.01

41 " " "9

42

52 " 1.29

54

55 "9 "9 " "

56

57 1600 AMB "

f 58 " SKY

59 o t " " "

62 "f AMB or if

IOAD(INT)

63 "f SKY " " "

6 4 If o " o

65 it it to

67 17M0 AMB " 1.49

LOAD(INT)
71 1830 SKY ""

72 SKY of 9o

73 99 to If if

74 AMB if it

LOAD(INT)

I
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APPENDIX A

DATA REDUCTION RECORD

29 FEBRUARY 1980

RLN '11) SCENE NOTES AT in (OK)

i 1340 AMB 0. 76
LOAD(INT)

78 SKY Overcast, thin cloud cover, sunny It

79 of 1 i t "

80 " "t""o

M I "" "5 "5 "

82 ""

83 AMB "S " "

LOAD(INT)

84 AMB I

LOAD (INT)

85 AMB
LOAD (EXT)

86 AMB "

LOAD (EXT)

87 SKY

88

89 " " " " "

91 1400"

97 15:50 " 0.59

98 IV

99 " " It of

106 " " " 0.90

107 "

108

109"""" "

110 AMB " " " "

LOAD(INT)

116 SKY " 0.85

| 45
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I 29 FEBRUARY 1980

(CON'lINUED)

R N TO) SCENE NOTES ATmin (K)

I~i SKY Overcast, thin cloud cover, sunny 0.8)

1 It " t If

119 1 3(J AMB t of I"

L.OAD( I NT)

1 2 S K Y "1 " it1 " ", "I ""

Itit of It

3 Ii; II It II II II

1 1 A M B " f " o

LOAD(INT)

18 AMB

LOAD (INT)

4
I

-. 46
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APPENDIX A

2 MARCH 1980

IATA RE'I)UCTI (N IEC()R

kIN 'IOD SCENE NOTES AT (-K)Mill

14 30 AMB Cloud's breaking; up 0.85

ILOAI) (I NT)

~SKY"" ""

i s, ,, ,, ,, ,, ,,

I '939 "9 "9 " ""

L,4 AMB " " " 0.83
LOAD (INT)

45 SKY Clear sky "

46 11 " 1"1

47 " " " 9

50 " " " 0.64

51 " " " "

52 99 I 99 9t

53 " Slight Clouds

54 it to "o"

58 AMB " " 0.66
LOAD( i NT)

00) SKY i'artial clouds overhead "

I) I"" """

62 "

64 " Very slight clouds overhead-
small patches

71 ""
12"" """

- 7 74 It " " to

7') it if of of it

3 (Wind from North)

47
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APPENDIX A

I)ATA REDUCTION RECORI)

8 MARCH 1980

RIN TOD SCENE NOTES ATmi (CK)

8 1640 AMB Wind from East 0.76

LOAD(INT)

I0 t)174" SKY " t,

13 " " " "

1) '" " 0.80

16 " " " "

18 1755 " "

19 1756 AMB " " "
LOAD (INT)

20 17')b SKY "

22 SKY "

23 SKY "

I

!

I

I 48
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APPENI)IX A

DATA REDUCTION RECORD

II MARCH 1980

RUN TOD SCENE NOTES AT . (OK)
-- __ minl

8 1728 ANB 0.76
LOAD (INT)

9 SKY VI
1') " ,

12 " All previous data @ 0.16 sec T
1 I ANlB " "",

LOAD (INT)
18 SKY New T.C. 125 ms 0.5 sec T

2.1 " ,

2 ) AMB ,,

LOAD (INT)
29 1757 AMB T.C. 400 ms = 1.6 sec T 0.29

LOAD(INT)

30 SKY ,,

31 i

32 i f,

4- AMB T.C. 12.5 msec = 0.5 sec 1.18
LOAD(INT)

44 SKY it

45 of i,

46 " It

47 i f,

52 AMB 3.65
LOAD (INT)

SKY it

6 ,, 94

49
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1 11 MARCH 1980

(CONT I NU ED)

RU;N TO) SCENE NOTES ATmil ('K)

5 SKY 3.65

60 AMB T.C. = 4 ms I = 0.016 PS 6.62

LOAD(INT)

62 SKY

64 "

6 )

170

I

II

II.

I
!5
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APPENDIX A

I)ATA REDUCTION RECORD

16 MARCH 1980

IN 'I 0)) SCENE NOTES AT . (OK)

i8 1130 AMB Back to 40 ms or 0.16 sec T 0.70

LOAD

80 SKY It

82 "

99 121() AMB '.C. to 12.5 ms = 0.05 sec 0.39

n LOAI) (INT)

100 SKY a,

10 1 ,'

102 "

115 AMB T.C. to 400 ms or 1.6 sec 0.17

LOAD (I NT)

117 SKY 
t,

1l8 "o is

119 " 
i,

80 AMB T.C. 1.25 sec T = 5.0 sc 0.14

LOAI)

82 SKY

8 3 it

89 AMB T.C. = 12.5 ms t = 0.05 sec 4.0

LOAD

91 SKY a,

92 ",

93

99 AMB T.C. = 40 msec T = 0.16 0.99

LOAD

I OlSKY

102 
It

I -51
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APPENDIX B

WEATHER DATA FOR OBSERVATIONS
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'rable Weather Data: '8 F(,+ 801

' Tim. Tempr.t tire Water Vapor Wind Di rect ion Wind Speed SkV

of Dav ("K) (g/m 3 ) (deg) (kts) Condit ion

090(0 28. 9 2.3 240 10 Clear

I m(m 284.2 3.3 240 12 Clear

1I0() 289.2 5.0 270 14 Clear

1200 222.0 6.3 240 19 Clear

I 0( 29Q4.2 7.3 260 16 Clear

1 1400 295.4 7.7 260 16 Clear

1500 296.5 8.0 250 16 Clear

1600 296.5 8.0 250 16 Scattered Clouds

1700 295.9 8.0 250 19 Scattered Clouds

1800 294.8 7.3 250 20 Scattered Clouds

190(0 293.1 6.6 240 13 Scattered Clouds

'1(000 291 5 6.3 240 13 Scattered 0o1ds

2100 290.4 5.a 230 12 Scattered Clouds

I
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Table Weather Data: 29 p(+ 80

Time Temperature Water Vapor Wind Direction Wind Speed Skyof Day ( K) (g/m 3 ) (deg) (kts) Condition

0900 279.8 2.6 340 08 Overcast

1000 281.5 3.1 310 08 Overc(-t

I 1()( 283.7 3.5 350 09 0 vercast

I20) 286.5 3. 7 310 08 Overcast

1 0(0 287.0 3.7 310 09 Overcast

I 1400 288.7 3.8 320 07 Overcast

1500 288.7 3.7 360 07 0ver catsr

16000 289.8 3.8 340 05 Overcast

1700 2M0.4 4.2 250 06 Broken

1800 288.7 3.8 320 08 Overcast

1900 285.9 3.3 330 10 Overcast

2000 281.] 2.4 350 10 Overcast

2100 282.0 1.q 350 09 Overcast

5

i
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Table Weather Data: 2 Mar 80

Time Temperature Water Vapor Wind Direction Wind Speed Sky
of Day (0K) (g/m3) (deg) (kts) Condition

0901) 20).4 0.4 320 1 3 Overcias t

1000 265.4 0.4 330 11 Overcast

I 10 265.9 0.7 320 16 Overcast

1 I200 266.5 0.7 330 16 Overcast

1300 267.0 0.9 330 16 Overcast

I 1400 267.6 0.9 340 16 Overcast

15)00 267.6 0.9 340 15 Overcast

1600 267.6 0.9 340 19 Overcast

170) 268.7 1.1 330 17 Broken

1800 268.1 0.7 310 15 Broken

190(0 267.0 0.5 330 17 Scattered

2000 265.9 0.5 320 16 Clear

2100 265.4 0.4 320 15 Clear

I

I
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Table Weather Data: 8 Mar 80

Time Temperature Water Vapor Wind Direction Wind Speed Sky

of Day (IK) (g/m3) (deg) (kts) Condition

0900 290.9 9.7 210 11 Overcast

10() 290.9 9.6 220 12 Overcat I

01 292.6 10.8 230 12 Broken

1200 204 2 12.5 240 12 Overcast

1 300 25. 4 13.7 260 13 Ovrcast

I 1400 297.0 13.9 290 16 Overcast

I 00 298.7 15.3 250 14 Overcast

1600 2Q8.1 15.3 260 17 Overcast

1700 298.1 15.3 240 12 Overcast

1800 297.6 14.8 230 10 Overcast

1900 295.9 12.9 220 08 Overcast

I 2000 294.8 12.2 220 09 Overcast

2100 294.2 11.9 240 10 Overcast

I

I

1
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Table Weather Data:11 Mar 80

Time Temperature Water Vapor Wind Direction Wind Speed Sky
of Day (0K) (g/m3) (deg) (kts) Condition

090() 281 .' 3.1 330 13 Broken

1000 283.1 2.8 330 15 Broken

1100 284.8 2.4 330 15 Overcast

I 1200 286.5 2.8 340 17 Overcast

1 00 287.h 2.4 330 16 Overcast

I 1400 287.6 2.1 330 16 Overcast

1500 288.7 2.1 330 11 Overcast

1600 288.1 1.9 340 12 Overcast

1700 287.0 1.7 320 1.1 Overcast

1800 285.4 1.6 320 10 Overcast

1900 284.2 1.0 340 10 Overcast

2000 282.6 1.0 340 it Overcast

2100 282.0 1.0 320 08 Overcast

4II4
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Table Weather Data: 16 Mar 80

Time Temperature Water Vapor Wind Direction Wind Speed Sky
of Day (OK) (g/m3) (deg) (kts) Condition

0900 284.2 3.8 130 10 Ove rca t

1000 285,9 4.4 160 11 Overcast

1100 289.8 6.6 160 14 Broken

I 1200 291.5 7.7 120 12 Broken

1300 293.1 8.7 170 16 Broken

I 1400 293.7 8.9 160 18 Broken

1900 294.2 9.2 170 14 Overcast

1600 294.2 8.7 170 14 Overcast

1700 293.1 8.0 170 12 Overcast

1800 292.6 8.0 180 14 Overcast

1900 291.5 7.7 170 13 Overcast

2000 290.9 7.3 170 13 Overcast

2100 291.5 7.7 170 10 Overcast

1
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C-i 28 February 1980

Ambient Load Measurements
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TI AVG 1 Re 22 #A# 1

58. 884 _ i

I )

REAL -

-189. 8 9<

8.8 SEC 2&.ON

TI AVG R#. 22 #At I
-19. 889

I

ILGNG
DB

T T-

00HZ 12.889

FV ,ur, - 1. Ambient LoaId Measurement. 28 Feb 80
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TI AVG 1 RNh 28 NAs I

600. 00-

REAL T

291

0.0 SC20.000

TI AVG RNh 28 #As 1
-10. 000 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LGMAG

M000

0.0 HZ 12.000

IFigure c-I. Ambient Load Measurement. 28 Feb 80
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TI AVG 1 RNh 38 NAl I

600. 005 m

REAL 3 1

1 -297

-200.00 -9

0.0 SEC 2.0

TI AVG R# 38 #A, 1
-10.000

LGMAG
OB

1 -1'" _ _

j -80. 000 __ __

0.0 HZ 12.000I
F Tprc C-i ,Ambient Load Measurement. 28 Feb 80
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TI AVG 1 R#s 57 #A, 1

60a0. f 00m

21 H

REAL -

-300 -z

-T -"- I 2

0. SEC 20. 0

TI AVG 1 R# 57 #A, I
-10. 00

LGMAG

T4

1210

i0.0@ HZ 1 2.0

IF ir,,, (-i . Ambient Load Measurement. 28 Feb 80
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I

TI AVG 1 Rh, 62 #As 1

REAL

N''

I

.08 SEC 2II

TI AVG R#s 62 #As I

II

LGMAGDB i

-I -
1 -188.80 . . .. r .... . -.. . . . -. . .. . .. ..

0.8 HZ 12.88

i6,Fire C-i. Ambient Load Measurement. 28 Feb 80

65



a
I

TI AVG 1 R#, 67 #At 1

300. 00 10

REAL M 3o( E

296

r -I' T T

8.8 SEC 20. .00

TI AVG R#, 67 #At 1

I

LGMAG

-4

i0.*0 fZ 12. Boo

F.i ,ur. C'-1. Ambient Load Measurement. 28 Feb 80
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C-2. 29 February 1980

Ambient Load Measurements
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I

TI AVG I Rih 76 #Ao I

S 350.00_I"

REAL

0. 0  I I I I

0.8 SEC 2.000

TI AVG Rha 76 IAo I
-10.000

LGMAG
DB

0.0 HZ 12.8M

Ftigure (:-2. Ambient Load Measurement 29 Feb 80
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I

TI AVG I RI, 83 #As I
459L 00_

m . 302

2q9

IREAL

296

IL SEC 2& M9

TI AVG Rh 83 IA, 1

LGMAG
08

IL 0 HZ 12.89

Figure C-2. Ambient Load Measurement. 29 Feb 80
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I

TI AVG I Rh 84 #A# I

301

299

REAL E

297 a

I.9 SEC 2 L, M

I TI AVG 1 Rh 84 #As 1

I

I
I LAG

08

I

L -9e HZ 12. m

Figure C-2. Ambient Load Measurement. 29 Feb 80
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I

T I AVG 1 RA 85 #As 1

406 00u e 1 30 01

fmm

REAL 297

294

il.S! SEC 2&M,9

TI AVG RA 85 #As 1

L ^G

I 0. HZ 12.

Figure C-2. Ambient Load Measurement. 29 Feb 801 71
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I

TI AVG 1 Rh 88 #A 1

35. 9_
U

C)297

REAL

LOa

L.0 SEC 2L M1

TI AVG RIh 96 #A* I-IL 00

LWG

I -199.19 wiI

L 9 HZ 12 M1

I Figure C-2. Ambient Load Measurement. 29 Feb 80
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I

TI AVG I Rh, 110 #As 1

451. 8
U

305

302

REAL
299 E

F-

296

'293
" 1

9 .9 SEC 2L 9

I TI AVG R 119 #As 1

-ie _
I

LO HZ 12.999

Figre C;-2. Ambient Load Measurement. 29 Feb 80
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I

I TI AVG I Rfs 119 OAR I

a 31Earn
REAL 299

IT 296
Li.FF I t i T

I, 0 SEC 2 8M

TI AVG Rfs 119 #Ao 1
-le.eu. _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

LTAG

I

I , HZ 12.

F'iure C-2. Ambient Load Measurement. 29 Feb 80
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I

TI VG I R#, 1 #As 1

4

REA L

I ~296

0.0 SEC 20.88

I
TI AVG R//n 17 #^Ao

I

LGMAG

I
I -I

-988 00 J - -----

8.0 HZ 12.0

.iiCr( C-2. Ambient Load Measurement. 29 Feb 80
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I

TI AVG R, 18 #As 1

REAL 298

aE
296

II

L.0A SEC 20.

T0I AVG Rh 18 #As I

S -1& 0 . .

0 .0 HZ 12.089

Figur(- C-2. Ambient Load Measurement. 29 Feb 80
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I

T AV- 1 R#s 34A 1

m

2i8 3

REAL A Te

280

m - .... --.. . 277

0. SEC 20.000

TI AVG R/s 34 #A, IS -20.000.

I A]

LGMAG
OB

0. HZ 12. M9

i ii.rt, C-3. Ambient 1,o8d Measuirement. 2 Mar 80I 78
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I

TI AVG i R#i 44 iPAo I

1 . . . . . . . . . . . . . ... . .. .

REAL 21 4
-h282 F

-- T
-. V r---T--v-

1. SEC 20. 

TI AVG Ri' 44 #As I
-18.88 _ _

LGMAG 4

I !!

0.0 HZ 12.8ON

li),',arv C-i. Ambient Load Measurement. 2 Mar 80
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I TI AVG I R#s 58 #At I

f

500.08

284

REAL 2

(,

280

9.0 SEC 2. 99

TI AVG Rs 58 #As 1

I0.9

LGMAG
DB

0.0 HZ 12.9 M

Figure C-3. Ambient Load Measurement. 2 Mar 80
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C-4. 8 March 1980

( Antient Load Measurements
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TI AVG 1 RA 19 #As 1

358.890
m 3)

REAL 3)

-51L M.

88 SEC 2M,,8

TI AVG 1 RD, 19 FAt 1

I

LWG

I I I I I I I

.B HZ 12. 88

I'igure C-4. Ambient Load Measurement. 8 Mar 801 82
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I

TI AVG I RA 8 As I

398.9 307

Q

REAL 304 e
Q)

(U

m I I I I

8.9 SEC 2L8 M8

TI AVG R 8 #At 1

I

LGHAG

(

L -t0 NZ12.

lFigrU C-4. Ambient Load Measurement. 8 Mar 80
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Ambient Load Measurements
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T I AVGI R# 8 lAs 1

I 296

REAL 293 C

-5L S- 290,1 IT _ 1 I- 7 1 I I l I l- -

I.9 SEC 2LM

TI AVG Rh a #At I
-19., _ _ _ __ __ __

LO HZ 12. M

Figure C-5. Anbient Load Measurement. II Mar 80
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TI AVG 1 RAl 13 fAi 1

- 296

&0

- 293 Z
REAL

E

; "- 290 m

LU SEC 28.99

TI AVG R 13 #As 1

OLA

6L3 HZ 1.

Figure C-5. Ambient Load Measurement. I I Mar 80
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TI AVG I Rha 25 PAs I

299.99294

I 293
REAL

1292 v

9.9SEC 28L.098

I TI AVG R~v 25 #As 1

LGI4AG
OB

I9.9 HZ 12.98M

F 1urv C-5. Ambient Load Measurement. 11 Mar 80I 87
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TI AVG I R#, 29 #A, 1

220.00- 29 1

'H4 z

-

REAL

292

r-

100.00

0.0 SEC 28

TI AVG RN, 29 NA, 1
-10. 000

I

LGMAG
09

[QI -9 0 8 . ..... - ------------

0. HZ 12.818

Figure C-5. Ambient Load Measurement. 11 Mar 80
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TI AVG 1 Rh 42 #A, I

296

293

REAL

290

-8.8 287

8.90 SEC 2.9

TI AVG I RI, 42 iAs 1
-18.8 M

I

LGMAG
O

&,9 HZ 12.8M

l IIrt r3 C-5. Ambient load Measurement. II Mar 80
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TI AVG I RN, 52 NAt 1

104

298

REAL 292 ~

286

-1. ~280

SEC 500

TI AVG RN, 52 NAs 1

LGMAG
DB

I -8 ~0000 I

0.0 HZ &O

Fi gu're C~-5. Ambitent Loaid Measiurement. 11 Matr 80

3 90



AD-DI 636 SIA INST OF TECH ATLANTA DusINERzNS EXPENI~m -- mC PiG An
MILU.IETElt WAVE ATMOSPHERIC ADfIONSTRY OBSERVATIOhiS* 1WNAN U1 J1 RAINWATER. . J 6A LLASHER N0173..76-C-0165

23LSSFE flflflflflflflfMLIi-3



I~ ~ 2 .22.4 5~

4..



I

I

TI AVG 1 Ro 60 A, 1

2. OM8

310

304 o

298

REAL 292

286

280

-I.5880 274

I I I I I I II

8. SEC 5.808

I TI AVG R# 6 IA, I

LGMAG
DB

I
I -88. - I F

I .9 HZ 5L00

.t-*Kure C-5. Ambient Load Measurement. 11 Mar 80
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C-6. 16 March 1980
Ambient Load Measurements
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TI AVG 1 , 78 PA 1

U(

REAL ,
1 

297 E0

8e 
295

LO8 SEC 2L M
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09
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Figure C-6. Ambient Load Measurement. 16 Mar 80
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TI AVG 1 R#, 99 #A, 1

- 299

298 o

297REAL

E

296
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295

K.0 SEC M000

TI AVG R#, 99 #A, 1
-10.00 _

I

LGMAG
0B
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0.0 HZ 4.000

Figure C-6. Ambient Load Measurement. 16 Mar 80
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TI AVG 1 R#v 115 #As 1

220. 00

I("
m0

2 9 9 )-

REAL 5"

120.00-. -298

0. SEC 88.

TI AVG R#, 115 #As 1
-10.80.

I

LGNAG: DB

-180. 7 1 I7

8.0 HZ 4.0000

I Figure C-6. Ambient Load Measurement. 16 Mar 80
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S TI AVG I Rh 86 Am I

248. -
M

0-

299

REAL Q-

17L. 0 298.5 <

U

I, 0 SEC 50 0

TI AVG RA. 8 #At 1I -18.80

-t

( -109.09i I -!
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Flglre C-6. Ambient Load Measurement. 16 Mar 80
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IIA~.RD 3o7n

1.39999

301
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g APPENDIX E

BIBLIOGRAPHY OF ATMOSPHERIC FLUCTUATION EFIECTS

A search of papers relevant to this investigation has been

performed. The majority of papers have been concerned with optical

propagation experiments of horizontal one-way transmission with coherent

sources. Much of the theoretical understanding of turbulence effects

originates from these investigations. Only recently have experiments

been extended to millimeter wavelengths. Not many publications have

treated vertical radiometric observations of atmospheric fluctuations,

and most of these have involved fluctuation rates less than 1 Hz.

Theory related to vertical passive observations must also be developed
in greater detail. In addition to turbulence effects, cloud formations

must be included in the formulation of sky brightness temperatures. The

importance of wind effects is treated in many publications. Despite the

need for advances in both radiometric observations and related theory,
most of the papers of the bibliography present various aspects which are

important to the fluctuation observations.

BIBLIOGRAPHY

(1) L. Tsang et al, "Theory for Microwave Thermal Emission from a Layer

of Cloud or Rains", IEEE Trans. AP, Vol AP-25, Plo. 5, pp 650-657, Sept.

1977. Formulation of scattering effects of layers of clouds and rain on

down-looking radiometers. Derive radiative transfer equations accounting

for polarization dependence and drop size distributions. Models clouds

and solves resulting equations for brightness versus frequency up to 300

GHz.
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(2) G. G. Haroules, W. E. Brown, "A 60-GHz Multi-Frequency Radiometric

Sensor for Detecting Clear Air Turbulence in the Troposphere", IEEE
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